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1.0  INTRODUCTION 

 
A critical first step in the analysis of visible-SWIR hyperspectral or multispectral imagery (HSI or 

MSI) is atmospheric correction or compensation, in which atmospheric absorption and scattering effects 
are removed and the data are reduced to surface spectral reflectance (see Fig. 1).  A number of 
atmospheric correction methods and algorithms exist, including algorithms based on first-principles 
radiation transport calculations (Gao et al., 1993, 2000; Montes et al., 2001; Green et al., 1996; Miller, 
2002; Adler-Golden et al., 1999; Matthew et al., 2000, 2003; Qu et al., 2000; Richter and Schlaepfer, 
2002), and empirical approaches such as the Empirical Line Method (ELM) (Roberts et al., 1985; Kruse 
et al., 1990), which relies on two or more known reflectances in the image.  However, none of these 
methods provide the ideal combination of high accuracy, high computational speed, and independence 
from prior knowledge. 
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Figure 1.  MODTRAN calculation of the apparent reflectance of a vegetation pixel as observed from 
space with nadir viewing, the Mid-Latitude Summer model atmosphere, and Rural aerosols with 
VIS=23km. 

 
This paper presents a new, semi-empirical quick atmospheric correction method, dubbed QUAC, 

which also enables retrieval of the wavelength-dependent optical depth of the aerosol or haze and 
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molecular absorbers. It allows the retrieval of approximate reflectance spectra even when the sensor does 
not have a proper radiometric or wavelength calibration, or when the solar illumination intensity is 
unknown, such as when a cloud deck is present.  Computational speed is much faster than for the first-
principles methods, making it potentially suitable for real-time applications.  In tests to date, QUAC has 
yielded remarkably good agreement with a state-of-the-art first-principles algorithm.  Like the ELM, 
QUAC assumes a linear relationship between spectral reflectance and measured radiance, which is 
considered to be a good approximation for most scenes.   

 
The standard radiance equation may be written as (Matthew et al., 2000, 2003) 
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where ρj is the observed reflectance (the radiance 
normalized by the surface normal component of the 
solar flux) for the j’th pixel at a spectral band 
centered at wavelength λ ρj

o is the actual surface 
reflectance, <ρ> is a spatially averaged surface 
reflectance. A, B, C and S are coefficients that 
describe the transmission and scattering effects of 
the atmosphere.  Their physical origin is highlighted 
in Figure 2.  The first coefficient, A, accounts for 
light that never encounters the surface, but is 
scattered and absorbed within the atmosphere.  The 
second, B, accounts for the sun-surface-sensor path 
direct transmittance.  The third, C, accounts for 
diffuse transmittance and gives rise to the 
“adjacency effect,” a spatial blending induced by 
atmospheric scattering.  The length scale of the 
adjacency effect is typically of order ~0.5 km, thus 
<ρ> is typically a slowly varying function of 
position within a large image.  S, the atmospheric 
spherical albedo, accounts for enhancement of the 
ground illumination by atmospheric reflection. 
 
 Eq. (1) reduces to a linear form under many common conditions in which (1) S<ρ> is small and 
when either, (2) the diffuse and direct transmittance terms can be combined with a single reflectance 
variable, or (3) the diffuse term can be combined with the backscattering term.  Situation (1) occurs 
frequently, when the visibility is reasonably high or when the ground is dark in the visible (such as with 
vegetation, water, or dark soil).  Situation (2) occurs when the pixels are very large, several hundred 
meters in size.  Situation (3) occurs when the scene materials are fairly uniformly interspersed or when 
the image covers a small geographic area (< ~1 km), making <ρ> nearly constant, or when the visibility is 
high, making the diffuse transmittance term small.  When (1) and (3) apply, Eq. (1) reduces to the linear 
equation   
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 With the linear Eq. (2), the aim of atmospheric compensation is essentially the determination of 
an offset, A+C<ρ>, and gain parameter, B, in order to retrieve the surface reflectance, ρj

o.  Numerous 

Figure 2.  Radiation-transfer contributions to the 
observed apparent reflectance, ρobs. 



 

approaches to this problem have been developed.  The ELM assumes that the radiance image contains 
some pixels of known reflectance.  This method is not generally applicable, as in-scene known 
reflectances are often not available.  In variants of the ELM, approximate gain and offset values are 
generated using pixels in the image that are treated as if their spectra were known.  For example, in the 
Flat Field Method a single bright pixel is taken as having a spectrally flat reflectance and the offset is 
taken as zero; accordingly, dividing the image pixel spectra by the bright pixel spectrum yields 
approximate relative reflectances.  In the Internal Average Relative Reflectance method, this procedure is 
followed using a scene-average spectrum rather than a single bright pixel spectrum.  In general, neither 
the Flat Field Method nor the Internal Average Relative Reflectance methods are very accurate.  
 
 First-principles methods express the Eq. (1) or Eq. (2) parameters in terms of atmospheric 
physical variables, such as column water vapor and aerosol optical depth or visibility.  For retrieving 
optical depth, methods are available that rely on modeling the aerosol backscatter over “dark” pixels such 
as vegetation and dark soil (Kaufman et al., 1997) or water bodies.  However, difficulties in determining 
the optical depth arise when there is a lack of suitable dark pixels in the scene, or when the sensor is at a 
low altitude, within the aerosol layer, so that the backscatter it measures is a small (and generally 
unknown) fraction of the total.  

 
Like many first-principles methods, QUAC determines the atmospheric compensation parameters 

directly from the information contained within the scene (observed pixel spectra), without ancillary 
information.  However, unlike most other methods, its aerosol optical depth retrieval approach does not 
require the presence of dark pixels.  The retrieved optical depth information can therefore be utilized to 
improve the accuracy of methods that use first-principles modeling.  In particular, it can be used to set the 
optical depth of a model aerosol when dark pixels are unavailable, or to select from among alternative 
model aerosols to provide consistency with optical depths retrieved from a dark pixel method. 
 
2.0  QUAC ALGORITHM DESCRIPTION 

 

The underlying assumptions of the approach are: 
 

• There are a number (≈10 or more) of diverse pixel spectra (diverse materials) in a 
scene, 

• The spectral standard deviation of ρj
o for a collection of diverse materials is a nearly 

wavelength-independent constant, and an additional, helpful assumption is that, 
• There are sufficiently dark pixels (ρj

o(λ)≈0) in a scene to allow for a good estimation 
of the nearly spatially invariant baseline contribution, ρb=A+C<ρ> 

 

The first assumption is usually applicable, as it only requires that a handful of pixels out of 
typically ~105 to 106 pixels display diverse spectra.  The most notable exception would be a scene over 
completely open and deep water, in which case the material reflectance is well known a priori.  The 
diverse spectra can be selected using any of a number of spectral diversity metrics and algorithms, such as 
endmembers.  The second assumption appears to be generally true based on our empirical observation, 
and is likely related to the lack of spectral correlation between diverse materials.  The third assumption is 
frequently applicable, as most scenes will contain a number of very dark pixels from such surfaces as 
water bodies, vegetation, and cast shadows. For the atypical cases that violate this assumption, there are 
alternative methods, described later, for estimating a reasonable baseline.  The implementation of QUAC 
is straightforward and efficient, as highlighted in Figure 3.  The atmospheric correction step just involves 
re-arranging Eq. (2) to solve for ρj

o(λ) given B and the baseline. A key attribute of QUAC is its 
applicability to any sensor viewing or solar elevation angle.  
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Figure 3.  Overview of QUAC atmospheric correction data-processing flow. 

 
Under the above-stated assumptions, the spectral standard deviation of Eq. (2) for a set of diverse 

pixel spectral can be expressed as, 
 

 )()()( o λσρλλσρ B=  (3) 
 
For reasons mentioned earlier, A + C<ρ> can be taken as a constant in many, if not most, cases, so it 
makes no contribution to the standard deviation.  In cases where it varies significantly within the scene, 
the image can be divided into smaller pieces, as discussed below.  Since σρo is assumed to be spectrally 
invariant, then to within a normalization factor, designated go, σρ represents the correction factor, B. The 
actual surface spectral reflectance can be retrieved using the extracted in-scene-determined compensation 
parameters and re-arrangement of Eq. (2) to yield 
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where ρb=A+C<ρ> is the baseline contribution. 

 
There are a number of ways in which the normalization factor, go, can be established.  For many 

sensors there is at least one atmospheric window band, typically in the 1500–2500 nm region, for which 
Β(λ)≈1 (inspection of Fig. 1 shows that B=0.9 is a good estimate for typical clear atmospheric 
conditions); thus, for this band 

 
 go= 0.9 /σρ (5) 
 

If a suitable window band is not available, the normalization factor, go, can still be extracted 
directly from the standard deviation curve. Two bands (λ2>λ) are selected which are outside of any water 
absorption region, insuring that the atmospheric extinction is due primarily to the aerosols.  The ratio of 
the standard deviations of these bands is a direct measure of the difference in aerosol optical depth, τ, via, 
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Depending on the wavelengths of the selected bands, a generally small correction for molecular Rayleigh 
scattering may be required.  For aerosols, the ratio of optical depths at two wavelengths is well 
approximated by the Ångström formula, 
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Combining Eqs. (6) and (7) allows one to convert the optical depth difference to an absolute optical depth 
at either wavelength, 
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The normalization factor is now determined from 

 
 go=exp(-τ(λ2))/σρ(λ2) (9) 

 
It is noted that Eq. (9) is just a generalization of Eq. (5). 

 
If neither the sensor radiometric calibration nor the solar illumination intensity is known, then σρ 

is known only to within a scale factor and the normalization factor, go, must be estimated by a different 
method.  One method is to set go such that that the maximum retrieved reflectance value for any 
wavelength and pixel is unity.  This method is found to work reasonably in images containing a variety of 
man-made materials, such as urban scenes.  Another method is to derive go by comparing the retrieved 
reflectance values with those in a library of material spectra. 
 

For most scenes, the baseline curve is defined as the darkest observed signal for each band from 
among the diverse spectra.  The presence of sufficiently dark pixels is indicated by at least one pixel 
spectrum with an apparent reflectance below ~0.05 for λ>1500 nm.  For the rare situation that a dark 
spectrum is unavailable, it is still possible to estimate a reasonable background.  One such method is to 
use a radiative-transfer code such as MODTRAN (Berk et al., 1989, 1998; Acharya et al., 1999) to 
compute the baseline based on the retrieved aerosol and molecular optical properties.  

 
While the focus of the previous discussion was on atmospheric compensation, it was noted that 

QUAC provides, to within a normalization factor, the sun-surface-sensor path transmittance, B(λ), which 
in window regions provides the wavelength-dependent aerosol extinction curve.  The process flow for 
retrieving the aerosol optical properties is highlighted in Figure 4.  Analysis of B can provide quantitative 
measures (column amounts) of all the atmospheric attenuation sources, including aerosol scattering and 
absorption, molecular absorption, and Rayleigh scattering.  This may be accomplished through spectral 
fitting with an accurate atmospheric radiative-transfer code (e.g., MODTRAN) or, alternatively, by 
analytical approximations such as the Ångström law discussed above.  
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Figure 4.  Overview of QUAC aerosol properties retrieval process flow. 
 

Noting that the definition of a scene or image is flexible, the QUAC approach may be applied to 
individual sub-sections of a scene or image, if a sufficient diversity of pixel spectra exists within the sub-
sections for computing a meaningful standard deviation and baseline.  In this way, spatial variations in the 
adjacency-averaged reflectance <ρ> and in the atmospheric parameters can be identified and taken into 
account in the atmospheric correction. 
 
3.0  DATA ANALYSIS 

 
QUAC was used to perform atmospheric correction and aerosol property retrieval on two very 

different hyperspectral AVIRIS (224 spectral channels from 400 to 2500 nm) data collects.  As depicted 
in Figure 5, one corresponds to high visibility and low humidity, and the other to low visibility and high 
humidity.  The NASA Stennis data is particularly useful because the Stennis site contains a large number 
of ground truth materials/panels (these are visible in the lower left corner of Figure 5). 

 

 
Figure 5.  RGB image of the AVIRIS data sets used for evaluation of QUAC. 



 

  
 

The first step in the process is the 
selection of diverse pixel spectra.  For this 
analysis, we used the fast and automated 
SMACC (Sequential Maximum Angle Convex 
Cone) (Gruninger et al., 2001) endmember 
code.  To further speed the endmember-finding 
we used only ten window region wavelengths.  
The results for the NASA Stennis scene are 
displayed in Figure 6.  It is evident that this set 
spans a wide variety of spectral shapes and 
reflectance values.  Several endmembers are 
quite dark, and the lowest reflectance value for 
each channel defines the baseline spectrum. 
 

The next step is to compute the 
standard deviation of the selected pixels.  
Before this is done, some refining of the initial 
selection usually occurs.  This involves 
weeding out spectra with sharp features, mainly vegetation spectra that display a steep rise around 700 nm 
(the chlorophyll red edge).  Pixels containing cirrus clouds, which can be easily discerned using 
established algorithms, are also rejected.  The standard deviations for the NASA Stennis and North 
Carolina SCAR data are presented in Figure 7.  The absorption due to the 940 nm H2O band is clearly 
evident, and the much deeper feature seen in the North Carolina data is indicative of a much higher 
humidity level.  Additional, weaker absorption features, such as the 840 nm H2O and 760 nm O2 bands 
are easily discernible.  The general upper bounding envelope to these curves, formed by spectral regions 
outside of the absorption features, is a direct measure of the aerosol extinction for the L-shaped path from 
the sun to the surface to the sensor (i.e., the B coefficient). By inspection, it is quite obvious that the 
Stennis scene corresponds to a high visibility while the North Carolina scene displays approximately an 
order of magnitude more aerosol extinction and corresponds to a much lower visibility.  The aerosol 
extinction is quantified below. 

 

 
Figure 7.  Spectral standard deviations based on the selected endmembers for the Stennis and North 
Carolina AVIRIS data sets. 

Figure 6.  The first 20 endmembers selected by 
SMACC using the apparent reflectances from the 
NASA Stennis data.



 

From the above information, baseline and standard deviation, the entire data cube can be 
atmospherically corrected.  Sample results for the Stennis data are shown in Figure 8 and include 
comparisons to FLAASH (Matthew et al. 2003, 2000) results and ground truth measurements.  In this 
instance, and in general, QUAC compares well to FLAASH.  The computational time required for the 
end-to-end QUAC process for an entire AVIRIS data cube (512 x 512 pixels and 224 spectral channels), 
as defined in Figure 8, is ~1 min on a 1.6 GHz Pentium IV PC.  This is based on relatively slow IDL 
coding for the endmember selection and atmospheric correction steps.  For comparison, FLAASH, which 
run a series of MODTRAN calculations, requires ~10min to perform the atmospheric correction. 

 

 
Figure 8.  Comparison of QUAC atmospherically-corrected reflectances to those obtained from FLAASH 
and ground truth measurements for the Stennis data. 

 
The key underlying assumption for QUAC is that the standard deviation of the endmember 

reflectances is independent of wavelength.  This can be demonstrated by considering the FLAASH-
corrected endmembers selected above by SMACC for the Stennis scene.  It is noted that we cannot use 
the QUAC corrected endmembers since the assumption of a flat standard deviation is built into the 
approach, and in fact the standard deviation of the QUAC-corrected endmembers will be absolutely 
constant.  However, no such assumption is built into FLAASH.  The results are depicted in Figure 9.  The 
effect of refining the endmember selection to weed out vegetation and outliers (exceptionally bright pixels 
and glints) is also shown in Figure 9. We ascribe the non-flat behavior on the edges to possible calibration 
issues and/or imperfect atmospheric correction.  In any event, for most of the spectral regime, ~500–
2400 nm, the standard deviation is acceptably flat.  We have produced similar curves for a number of 
different AVIRIS data sets and find similarly good, and sometimes better, behavior of the standard 
deviations. 

 
An advanced implementation of QUAC could correct for the residual errors associated with the 

deviation from perfectly flat spectral behavior for the endmember standard deviation.  The underlying 
assumption is that the basic QUAC approach yields a sufficiently good atmospheric correction to allow 
for a useful un-mixing of the corrected endmember spectra based on a material spectral library.  The 
standard deviation may be computed for the library fit to the endmember spectra, and the resulting 
standard deviation curve from this fit used to further improve the atmospheric correction.  



 

 
Figure 9.  Standard deviation of the FLAASH-corrected endmembers for the Stennis scene. 

 
QUAC was also applied to the multispectral satellite-based LANDSAT ETM+ sensor (6 broad 

bands, 450–2500 nm, 30 m GSD).  The results with comparison to FLAASH are displayed in Figure 10. 
 

 
Figure 10.  QUAC results and comparison to FLAASH for the multispectral LANDSAT ETM+ sensor. 

 
The use of QUAC to retrieve aerosol optical properties following the process defined in Figure 4 

is illustrated in Figure 11 for the Stennis and North Carolina data sets.  An interesting result concerns the 
retrieved Ångström law exponent, α, which is indicative of aerosol type.  For the North Carolina aerosol, 
α=1.5, which is identical to that for the MODTRAN rural aerosol model.  For the Stennis data, α=2.4, 
which indicates a stratospheric aerosol type.  This makes sense, as the small aerosol optical depth 
retrieved may all be attributed to a small residual stratospheric aerosol contribution as opposed to 
boundary layer aerosols. 

 



 

 
Figure 11.  QUAC retrieval of aerosol optical properties based on an Ångström law fit (dashed lines) to 
the endmember standard deviations for the AVIRIS Stennis and North Carolina data sets. 
  

Validation of the QUAC aerosol 
property retrieval approach is considerably 
more difficult to accomplish than the 
atmospheric correction approach because 
it requires complete characterization of the 
aerosol vertical profile concurrent to an 
HSI or MSI data collection.  In lieu of 
such data, the next best validation 
approach is to use a high-fidelity HSI or 
MSI simulation code.  We have recently 
developed such a code (Berk et al., 2000a; 
Richtsmeier et al., 2001), called 
MCSCENE, for this purpose.  Briefly, it 
features a backward Monte Carlo 
multiple-scattering radiative-transfer 
approach utilizing MODTRAN 
spectroscopy, includes a fully 3D 
voxelized atmosphere, and models the 
surface at high spatial resolution allowing 
for topographical features and BDRFs (Bi-
Directional Reflectance Distribution 
Function).  We performed simulations for 
the satellite-based IKONOS sensor (4 
broad bands, 450–800 nm, 2 m GSD) of 
the Stennis site.  This included nadir and 
off-nadir viewing and variation of the 
solar zenith angle (forward and backward 
aerosol scattering geometries).  The Rural aerosol model with a visibility of 23 km was assumed.  The 
results are presented in Figure 12.  The QUAC derived aerosol optical properties are in close agreement 
with the actual ones used in the simulation.  The off-nadir cases for the two solar azimuth/scattering 

Figure 12.  Average reflectances (top curves) and standard 
deviations (bottom curves) for the endmembers selected for 
the IKONOS simulation.  The square symbols on the 
bottom curves are the actual B(λ) values used in the 
simulations.  



 

geometries display very different average reflectances (higher for forward scattering – 180° azimuth) but 
identical aerosol transmittance curves, B(λ).  Even though the solar azimuths are quite different, the total 
L-shaped path lengths are identical and thus, should yield identical extinction curves. 
 
4.0  CONCLUSIONS AND RECOMMENDATIONS 
 

A new semi-empirical algorithm, QUAC, for atmospheric correction and aerosol optical 
properties retrieval for VIS-SWIR HSI and MSI sensors has been developed.  Initial applications of 
QUAC to atmospheric correction of HSI AVIRIS and MSI LANDSAT data sets show surprisingly good 
performance, nearly comparable to that of a first-principles physics-based code.  The utility of QUAC for 
retrieving wavelength-dependent aerosol extinction, and by extension aerosol type, was demonstrated for 
several AVIRIS data sets.  An initial validation of the aerosol optical properties retrieval method was 
accomplished through the use of a HSI scene simulation approach.  Continued development and 
validation of QUAC is recommended using a wider variety of HSI and MSI data sets, including simulated 
data, and through field measurements involving full characterization of the aerosol column concurrent 
with airborne and/or satellite-based HSI and MSI observations. Computational speed-ups, automation, 
and eventually the development of an on-board data processing capability should also be explored. 
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